China Standard Gic Spline Shaft Coupling Motor Couplings motor coupling

Product Description

GIC Spline Shaft Coupling Motor Couplings

Description of GIC Spline Shaft Coupling Motor Couplings
>Integrated structure, the overall use of high-strength aluminum alloy materials
>Elastic action compensates radial, angular and axial deviation
>No gap shaft and sleeve connection, suitable for CHINAMFG and reverse rotation
>Designed for encoder and stepper motor
>Fastening method of clamping screw

 

Catalogue of GIC Spline Shaft Coupling Motor Couplings

 

 

model parameter

common bore diameter d1,d2

ΦD

L

L1

L2

F

M

tightening screw torque
(N.M)

GIC-12xl8.5

2,3,4,5,6

12

18.5

0.55

1.3

2.5

M2.5

1

GIC-16xl6

3,4,5,6,6.35

16

16

0.55

1.4

3.18

M2.5

1

GIC-16×23

3,4,5,6,6.35

16

23

0.55

1.4

3.18

M2.5

1

GIC-19×23

3,4,5,6,6.35,7,8

19

23

0.55

1.4

3.18

M2.5

1

GIC-20×20

4,5,6,6.35,7,8,10

20

20

0.55

1.5

3.75

M2.5

1

GIC-20×26

4,5,6,6.35,7,8,10

20

26

0.55

1.5

3.75

M3

1.5

GIC-25×25

5,6,6.35,7,8,9,9.525,10,11,12

25

25

0.6

1.7

4.84

M3

1.5

GIC-25×31

5,6,6.35,7,8,9,9.525,10,11,12

25

31

0.6

1.8

4.46

M3

1.5

GIC-28.5×38

6,6.35,8,9,9.525,10,11,12,12.7,14

28.5

38

0.8

2.1

5.62

M4

2.5

GIC-32×32

8,9,9.525,10,11,12,12.7,14,15,16

32

32

0.8

2.3

6.07

M4

2.5

GIC-32×41

8,9,9.525,10,11,12,12.7,14,15,16

32

41

0.8

2.3

6.02

M4

2.5

GIC-38×41

8,9,9.525,10,11,12,14,15,16,17,18,19

38

41

0.8

2.7

5.32

M5

7

GIC-40×50

8,9,9.525,10,11,12,14,15,16,17,18,19,20

40

50

0.8

2.7

6.2

M5

7

GIC-40×56

8,10,11,12,12.7,14,15,16,17,18,19,20

40

56

0.8

2.7

8.5

M5

7

GIC-42×50

10,11,12,12.7,14,15,16,17,18,19,20,22,24

42

50

0.8

2.7

6.2

M5

7

GIC-50×50

10,12,12.7,14,15,16,17,18,19,20,22,24,25,28

50

50

0.8

2.9

7.22

M6

12

GIC-50×71

10,12,12.7,14,15,16,17,18,19,20,222425,28

50

71

0.8

3.3

8.5

M6

12

model parameter

Rated torque(N.m)

allowable eccentricity

(mm)

allowable deflection angle

(°)

allowable axial deviation

(mm)

maximum speed

(rpm)

static torsional stiffness

(N.M/rad)

weight

(g)

GIC-12xl8.5

0.5

0.1

2

±0.2

11000

60

4.8

GIC-16xl6

0.5

0.1

2

±0.2

10000

80

8

GIC-16×23

0.5

0.1

2

±0.2

9500

80

9.3

GIC-19×23

1

0.1

2

±0.2

9500

80

13

GIC-20×20

1

0.1

2

±0.2

10000

170

14

GIC-20×26

1

0.1

2

±0.2

7600

170

16.5

GIC-25×25

2

0.15

2

±0.2

6100

780

26

GIC-25×31

2

0.15

2

±0.2

6100

380

29

GIC-28.5×38

3

0.15

2

±0.2

5500

400

51

GIC-32×32

4

0.15

2

±0.2

5000

1100

56

GIC-32×41

4

0.15

2

±0.2

500

500

65

GIC-38×41

6.5

0.2

2

±0.2

650

650

107

GIC-40×50

6.5

0.2

2

±0.2

600

650

135

GIC-40×56

8

0.2

2

±0.2

800

800

142

GIC-42×50

8.5

0.2

2

±0.2

800

850

135

GIC-50×50

20

0.2

2

±0.2

1000

1000

220

GIC-50×71

20

0.2

2

±0.2

1000

1000

330

 

 

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

motor coupling

Best Practices for Installing a Motor Coupling for Optimal Performance

Proper installation of a motor coupling is essential to ensure optimal performance and reliability of the power transmission system. Follow these best practices when installing a motor coupling:

1. Correctly Match Coupling Type:

Select a motor coupling type that is suitable for the specific application and operating conditions. Consider factors like torque requirements, misalignment tolerance, and environmental factors when choosing the coupling.

2. Ensure Proper Alignment:

Achieve precise alignment between the motor and driven equipment shafts before installing the coupling. Misalignment can lead to premature wear and reduced efficiency.

3. Check Shaft Endplay:

Verify that the shafts have the correct endplay to allow for thermal expansion and contraction. Inadequate endplay can lead to binding or increased stress on the coupling and connected components.

4. Clean Shaft Surfaces:

Ensure that the shaft surfaces are clean and free of any debris or contaminants before installing the coupling. Clean surfaces promote proper coupling engagement and reduce the risk of slippage.

5. Use Correct Coupling Fasteners:

Use the specified fasteners, such as bolts or set screws, provided by the coupling manufacturer. Tighten the fasteners to the recommended torque values to secure the coupling properly.

6. Verify Keyway Alignment:

If the coupling has a keyway, ensure that it aligns correctly with the key on the motor and driven equipment shafts. Proper keyway alignment prevents rotational slippage and ensures efficient torque transmission.

7. Lubrication:

If the coupling requires lubrication, apply the appropriate lubricant as recommended by the manufacturer. Proper lubrication reduces friction and wear on coupling components.

8. Perform Trial Run:

Before putting the system into full operation, perform a trial run to check for any abnormalities or vibrations. Monitor coupling performance and check for leaks, noises, or other signs of issues.

9. Regular Inspection and Maintenance:

Conduct regular inspections and maintenance on the motor coupling and the entire power transmission system. Check for wear, alignment, and any signs of damage, and address any issues promptly.

10. Follow Manufacturer Guidelines:

Always follow the manufacturer’s installation guidelines and recommendations for the specific coupling model. Manufacturer guidelines provide essential information for optimal performance and safe operation.

By adhering to these best practices, you can ensure that the motor coupling functions efficiently and contributes to the overall performance and reliability of the mechanical system.

“`motor coupling

Comparing Motor Couplings with Direct Drives and Other Power Transmission Methods

Motor couplings, direct drives, and other power transmission methods each have their advantages and disadvantages, making them suitable for different applications. Let’s compare these methods in terms of various factors:

1. Efficiency:

Motor couplings generally offer high efficiency in power transmission since they provide a direct mechanical connection between the motor and driven equipment. In contrast, direct drives can also be efficient as they eliminate the need for intermediate components.

2. Misalignment Compensation:

Motor couplings are designed to accommodate misalignments between the motor and driven equipment shafts, making them suitable for applications where misalignment is expected. Direct drives, on the other hand, require precise alignment between the motor and driven equipment.

3. Maintenance:

Motor couplings often have minimal maintenance requirements since they do not have intricate components. Direct drives can be maintenance-free as well since they eliminate the need for belts, chains, or gears.

4. Backlash:

Motor couplings typically have low or zero backlash, ensuring precise torque transmission. Direct drives also offer low or no backlash since there are no intermediate components to introduce play.

5. Cost:

Motor couplings are generally more cost-effective compared to direct drives, which may involve higher initial investment in specialized components. However, the overall cost may vary depending on the application and system requirements.

6. Space and Size:

Motor couplings are compact and can fit in tight spaces, making them suitable for applications with limited room. Direct drives may require more space, depending on their design and motor size.

7. Shock Absorption:

Motor couplings, especially those with elastomeric elements, can absorb shocks and vibrations, protecting the motor and driven equipment. Direct drives may not have the same level of shock absorption.

8. Torque Transmission:

Both motor couplings and direct drives are efficient in torque transmission. However, some direct drives may offer higher torque capacity for heavy-duty applications.

9. Installation Complexity:

Motor couplings are generally easier to install compared to direct drives, which may involve more intricate assembly and alignment procedures.

10. Application:

Motor couplings are versatile and can be used in various industrial setups, especially when misalignment compensation is required. Direct drives are commonly found in applications where high precision and direct mechanical connection are crucial.

Ultimately, the choice between motor couplings, direct drives, and other power transmission methods depends on the specific needs and constraints of the application. Each method offers distinct advantages, and selecting the most suitable option requires careful consideration of the application’s requirements, space limitations, budget, and maintenance preferences.

“`motor coupling

Types of Motor Couplings and Their Applications in Different Industries

Motor couplings come in various types, each designed to meet specific requirements and applications in different industries. Here are some common types of motor couplings and their typical uses:

1. Rigid Couplings:

Rigid couplings provide a solid and inflexible connection between the motor shaft and the driven equipment. They are ideal for applications where precise alignment and torque transmission are critical. Rigid couplings are commonly used in machine tools, robotics, and high-precision industrial equipment.

2. Flexible Couplings:

Flexible couplings are designed to accommodate misalignment between the motor and driven equipment shafts. They can handle angular, parallel, and axial misalignment, reducing stress on bearings and increasing the system’s flexibility. Flexible couplings find applications in pumps, compressors, conveyors, and other machinery where misalignment may occur due to vibration or thermal expansion.

3. Gear Couplings:

Gear couplings use toothed gears to transmit torque between the motor and the driven equipment. They provide high torque capacity and are suitable for heavy-duty applications, such as steel rolling mills, cranes, and marine propulsion systems.

4. Disc Couplings:

Disc couplings use thin metal discs to transmit torque. They offer high torsional stiffness, allowing precise motion control in applications like servo systems, CNC machines, and robotics.

5. Jaw Couplings:

Jaw couplings use elastomeric elements to dampen vibrations and accommodate misalignment. They are commonly used in small electric motors and general-purpose machinery.

6. Bellows Couplings:

Bellows couplings have a flexible accordion-like structure that compensates for misalignment while maintaining torsional rigidity. They are used in vacuum systems, optical equipment, and other high-precision applications.

7. Grid Couplings:

Grid couplings use a flexible grid element to transmit torque and dampen vibrations. They are suitable for applications in pumps, compressors, and conveyor systems where shock loads and misalignment are common.

8. Magnetic Couplings:

Magnetic couplings use magnetic fields to transmit torque between the motor and driven equipment. They are commonly used in applications requiring hermetic sealing, such as pumps and mixers handling hazardous or corrosive fluids.

Each type of motor coupling offers unique advantages and is chosen based on the specific needs of the industry and the application. Proper selection and installation of the right coupling type enhance efficiency, reliability, and safety in motor-driven systems across various industries.

“`
China Standard Gic Spline Shaft Coupling Motor Couplings   motor couplingChina Standard Gic Spline Shaft Coupling Motor Couplings   motor coupling
editor by CX 2024-01-15

Recent Posts