China supplier OEM CNC Machining Split Motor Rigid Shaft Coupling motor coupling

Product Description

OEM CNC Machining Split Motor Rigid Shaft Coupling

Product Description

 

 

Customized cnc machining parts notes:

Quotation

According to your drawing(size, material, thickness, processing content, and required technology, etc)

Tolerance Surface Roughness

+/-0.02 – 0.01mm Ra0.2 – Ra3.2(Customized avaiable)

Materials Avaiable

Aluminum, Copper, Stainless steel, Iron, PE, PVC, ABS, etc.

Surface Treatment

Polishing, general/hard/color oxidation, surface chamfering, tempering, etc.

Processing

CNC Turning, Milling parts, drilling, auto lathe, tapping, bushing, surface treatment, etc.

Testing Equipment

CMM/Tool microscope/multi-joint arm/Automatic height gauge/Manual height gauge/Dial gauge/Roughness measurement

Drawing Formats

 PRO/E, Auto CAD, CHINAMFG Works , UG, CAD / CAM / CAE, PDF PRO/E, Auto CAD, CHINAMFG Works , UG, CAD / CAM / CAE, PDF

Our Advantages

(1) 24 hours online service & Quickly Quote/Delivery. 

(2) 100% QC quality inspection before delivery, and can provide quality inspection form.           
(3) 18+ years of experience in the CNC machining area and have a senior design team to offer perfect modification suggestions.

       Features of jaw coupling:

      1.Easy of inspection,easy maintenance.

      2.Can absorb vibration,parallel,angular and axial misalignments. 

      3.Identical clockwise and anticlockwise rotational charateristics.

      4.Both ends material is iron, intermediate for rubber materials.

      5.Simple configuration, setscrew type,low price.

      6.Hole can be self-processing,easy facilitate.

      7.For step motor,screw, machine positioning system.

     The SL cross slide coupling is slid in the corresponding radial grooves of the large end faces
     of the half couplings on both sides.
     The main feature of the slider coupling is that it allows the 2 shafts to have a large radial
     displacement, and allows for small angular displacement and axial displacement. Due to the
     centrifugal force generated by the eccentric motion of the slider, it is not suitable to use this
     coupling. High-speed movement, the coupling torque of the coupling is 120-63000N.m, the
     speed is 250-70r/min.
 

     Advantages:

     Protects driven component by serving as a mechanical “fuse” – an inexpensive replaceable plastic
     midsection shears under excess load.
     Protects support bearings by exerting consistently low reactive forces, even under large misalignments.
     Homokinetic transmission – driving and driven shafts rotate at exactly the same speed at all times.
     Zero backlash and high torsional stiffness.
     Accommodates large radial misalignment in a short length.
     Easy installation in blind or difficult installations when through-bores are used.
     Economically priced compared to other couplings with similar performance characteristics.

     CNC machining parts, metal machining parts, precision machining parts, Machined parts, Machinery 
     parts,Machine Parts,machining parts machining,Cnc machining parts machinery parts,machined 
     parts,precision machining parts,oem machining parts,cnc machining parts,cnc machined parts.

             Q: Why choose Shengao product?
             A: We shengao have our own plant– HangZhou Shengao machinery Co.,Ltd, therefore, we can 
             surely promise the quality of every product and provide you comparable price.

             Q: Do you provide OEM Service?
             A: Yes, we provide OEM Service.

             Q: Do you provide customized machining parts?
             A: Yes. Customers give us drawings and specifications, and we will manufact accordingly.

             Q: What is your payment term?
             A: We provide kinds of payment terms such as L/C, T/T, Paypal, Escrow, etc.

             If there’s anything we can help, please feel free to contact with us.

motor coupling

How to Select the Right Motor Coupling for Specific Torque and Speed Requirements?

Selecting the right motor coupling for specific torque and speed requirements is crucial to ensure optimal performance and reliability in a power transmission system. Here are the steps to guide you through the selection process:

1. Identify Torque and Speed Requirements:

Determine the torque and speed requirements of your application. Torque is the rotational force needed to perform the intended task, while speed refers to the rotational speed at which the coupling will operate.

2. Consider Operating Conditions:

Take into account the environmental conditions and operating parameters of your application. Factors such as temperature, humidity, and potential shock loads may influence the coupling’s performance.

3. Calculate Torque and Speed Ratios:

Calculate the torque and speed ratios between the motor and driven equipment. This will help you understand the required torque capacity and misalignment capabilities of the coupling.

4. Choose the Coupling Type:

Select a coupling type that aligns with your torque and speed requirements. For higher torque applications, consider gear couplings, while elastomeric couplings are suitable for lower torque applications with misalignment needs.

5. Check Torque and Speed Ratings:

Consult the manufacturer’s specifications to ensure the selected coupling can handle the calculated torque and speed requirements. Pay attention to both the continuous and peak torque ratings.

6. Misalignment Compensation:

If your application requires misalignment compensation, opt for flexible couplings that can accommodate angular and/or parallel misalignment.

7. Consider Critical Speed:

For high-speed applications, check the coupling’s critical speed rating. Operating near or beyond the critical speed can lead to resonance and coupling failure.

8. Verify Service Life:

Check the expected service life of the coupling under your application’s conditions. A coupling with a longer service life can reduce maintenance needs and downtime.

9. Budget and Cost:

Consider the budget and overall cost of the coupling, including installation and maintenance expenses. Balance the initial cost with the coupling’s expected performance and durability.

10. Seek Expert Advice:

If you are unsure about the best coupling choice for your specific requirements, consult with coupling manufacturers or industry experts who can provide valuable insights and recommendations.

By following these steps and conducting thorough research, you can confidently select the right motor coupling that matches your torque and speed requirements, ensuring efficient power transmission and prolonged equipment lifespan.

“`motor coupling

Explaining the Concept of Backlash and Its Impact on Motor Coupling Performance

Backlash is a critical factor in motor coupling performance and refers to the clearance or play between mating components within the coupling. In the context of motor couplings, it specifically relates to the amount of free movement or angular displacement that occurs when there is a change in direction of the driven shaft without a corresponding immediate change in the driving shaft.

Backlash in motor couplings can occur due to several factors:

  • Manufacturing Tolerances: Variations in the manufacturing process can lead to slight clearances between coupling components, introducing backlash.
  • Wear and Tear: Over time, the coupling components may experience wear, leading to increased clearance and backlash.
  • Misalignment: Improper alignment between the motor and driven equipment shafts can cause additional play in the coupling, resulting in increased backlash.

The impact of backlash on motor coupling performance includes the following:

1. Reduced Accuracy:

Backlash can lead to inaccuracies in motion transmission. When the direction of rotation changes, the free play in the coupling must be taken up before torque can be effectively transmitted. This delay in motion transfer can cause positioning errors and reduced accuracy in applications requiring precise movements.

2. Vibration and Noise:

Excessive backlash can cause vibration and noise during operation. The sudden engagement of the coupling components after a change in direction can create shocks and vibrations that may affect the overall system performance and lead to premature wear of coupling components.

3. Reduced Efficiency:

Backlash results in power loss, especially in applications with frequent changes in direction. The energy required to take up the clearance in the coupling reduces the overall efficiency of power transmission.

4. Wear and Fatigue:

Repeated impacts due to backlash can accelerate wear and fatigue of coupling components, leading to a shorter lifespan and potential coupling failure.

5. Safety Concerns:

In certain applications, particularly those involving heavy machinery or high-speed operations, excessive backlash can pose safety risks. The lack of immediate response to directional changes can affect the control and stability of the equipment.

To mitigate the effects of backlash, it is essential to select motor couplings with low or controlled backlash and to maintain proper alignment during installation. Regular inspection and maintenance can help identify and address any increasing backlash, ensuring the motor coupling operates with optimum performance and reliability.

“`motor coupling

Advantages of Using Motor Couplings in Various Mechanical Power Transmission Setups

Motor couplings offer several advantages in mechanical power transmission setups, making them a popular choice in various industries. Here are some key advantages of using motor couplings:

  • Torque Transmission: Motor couplings efficiently transmit torque from the motor to the driven equipment, enabling the machinery to perform its intended task.
  • Misalignment Compensation: Flexible motor couplings can accommodate misalignment between the motor and driven equipment shafts, reducing stress on bearings and increasing the system’s flexibility.
  • Vibration Damping: Some motor couplings, particularly those with flexible elements, can dampen vibrations generated during motor operation, improving the overall system’s performance and reducing wear on connected components.
  • Overload Protection: Motor couplings with torque-limiting features act as overload protection, preventing damage to the motor or driven equipment under excessive load or torque.
  • Noise Reduction: Well-designed motor couplings can help reduce noise and resonance in the system, contributing to quieter and smoother operation.
  • High Torque Capacity: Certain types of motor couplings, such as gear couplings, offer high torque capacity, making them suitable for heavy-duty applications.
  • Misalignment Tolerance: Flexible couplings can handle both angular and parallel misalignment, ensuring smoother power transmission even in dynamic or changing conditions.
  • Adaptability: Motor couplings are available in various types and sizes, making them adaptable to different motor and driven equipment configurations.
  • Protection of Machinery: By dampening shocks and compensating for misalignment, motor couplings protect the machinery from premature wear and damage.
  • Reduced Maintenance: Properly selected and installed motor couplings can reduce maintenance needs by minimizing wear on connected components and improving overall system reliability.

Motor couplings play a critical role in connecting motors to driven equipment, providing smooth and efficient power transmission while protecting the mechanical system from stress and wear. Proper selection and installation of the appropriate motor coupling type are crucial to maximizing these advantages and ensuring optimal performance in power transmission setups.

“`
China supplier OEM CNC Machining Split Motor Rigid Shaft Coupling   motor couplingChina supplier OEM CNC Machining Split Motor Rigid Shaft Coupling   motor coupling
editor by CX 2023-12-13

Recent Posts