China Custom 3mm 4mm 6mm 8mm Hex Brass Flexible Motor Shaft Connector Coupling motor coupling

Product Description

Certification ISO9001:2018;SGS;TS16949
Quality 

CNC machine, CNC Turning, CNC Milling, CNC center machine,

auto lathe machine, Wire-cutting Machine
, CNC Laser cutting machines, CNC bending machines, 

CNC punching machines, CNC bending machines

CNT stamping machine, CNC/auto lathe machine,

Drilling machine, Hydraulic machine, Riveting machine,

Tapping machine, welding machine, Film attaching machine, etc.

Materials

Aluminum, Steel, SPCC, SGCC,SECC,

SPTE, Stainless steel, Brass, Copper, 

Bronze, ABS, PC, PO, POM, Nylon,  etc.

Surface finish

Anodized, Oxide, Plating, Brushing, Polishing, Blackened, Powder coating, 

Sandblasting, Laser engraving Zn-plating, Ni-plating, Cr-plating, Tin-plating,

copper-plating, the wreath oxygen resin spraying, the heat disposing,

hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated,

blue-black zinc-plated, rust preventive oil, titanium alloy galvanized,

silver plating, plastic, electroplating, anodizing, etc

Inspection Equipment

CMM, Projection, Calipers, Micro caliper, Thread Micro caliper, 

Pin gauge, Caliper gauge, Pass meter, Pass meter, etc.

Drawing formation PDF, CAD/DWG/DXF, IGS/STP etc.

HangZhou CHINAMFG Industrial Co., Ltd. is a comprehensive factory that specialized in fasteners, CNC parts, stamping parts, machinery parts, and so on. Since the establishment of the company, we have passed ISO9001: 2018, SGS, TS16949.
Our factory covers an area of 5,000 square CHINAMFG and has 58 employees, including 5 R & D personnel and 5 quality inspection personnel.
Major areas of service include automotive, bicycle and motorcycle, industrial automation, agricultural equipment, digital electronics, medical equipment, and so on.
Looking CHINAMFG to your cooperation.

1. We have Specialized QC testers to check the products quality according to customers’ needs.

2. We have IQC to check the dimensions and surface of the incoming material.

3. We have PQC to inspect  full-course during the processing.

4. We have FQC to inspect all the plating products from outsides and make the 100% inspection before the shipments.

FAQ:

 

Q1: Why choose ZheJiang n?
To provide our customers with first-class services in the supply of quality screws minimizing costs.

 

Q2: How is quality ensured?
All our processes strictly adhere to ISO9001:2018 procedures. We have strict quality control from producing to delivery. Our company had strong technology support, 80% of our colleagues are master or bachelor’s degree. We have cultivated a group of managers who are familiar with product quality , good at modern concept of management.

 

Q3: Can You Strictly Follow The Tolerance on The Drawing And Meet The High Precision?
Yes, we can, we can provide high precision parts and make the parts as your drawing.

 

Q4: How should I order and make payment?
By T/T, for samples 100% with the order; for production, 30% paid for deposit by T/T before production arrangement, the balance to be paid before shipment. negotiation accepted.

Q5: What’s your Delivery Time?
Standard parts: 7-20days
Non-standard parts: 15-25days
We will make the delivery as soon as possible with the guarantee quality

 

Q6:How to Custom-made (OEM/ODM)?
If you have a new product drawing or a sample, please send to us, and we can custom-made the as your required. We will also provide our professional advices of the products to make the design to be more realized & maximize the performance.

Q7:Which mode of transport would be better?
In general, the product are heavy, we advice to make delivery by sea, Also we respect your views of other transportation as well.

motor coupling

Can Motor Couplings Compensate for Angular, Parallel, and Axial Misalignments?

Yes, motor couplings are designed to compensate for different types of misalignments, including angular, parallel, and axial misalignments. The ability to accommodate misalignment is a key feature of motor couplings, and various coupling types offer different levels of misalignment compensation:

1. Angular Misalignment:

Angular misalignment occurs when the motor and driven equipment shafts are not perfectly aligned in the same plane, causing an angle between them. Motor couplings, especially flexible couplings, can effectively compensate for angular misalignment. Flexible couplings like jaw couplings, beam couplings, and oldham couplings can tolerate angular misalignment to a certain extent while transmitting torque smoothly.

2. Parallel Misalignment:

Parallel misalignment happens when the motor and driven equipment shafts are not perfectly aligned along their axis, leading to offset displacement. Flexible couplings, such as bellows couplings and disc couplings, are well-suited to accommodate parallel misalignment. These couplings can maintain good misalignment tolerance while providing high torsional stiffness for efficient torque transmission.

3. Axial Misalignment:

Axial misalignment occurs when there is a linear offset between the motor and driven equipment shafts along the axis. For some flexible couplings, a limited amount of axial misalignment can be tolerated. However, specific coupling types, such as self-aligning ball bearing couplings, are more suitable for handling higher levels of axial misalignment.

It is important to note that while motor couplings can compensate for misalignment, they have their limits. Excessive misalignment can lead to premature wear, reduced efficiency, and potential coupling failure. Proper alignment during installation and regular maintenance are essential to ensure the coupling’s misalignment compensation remains effective over time.

When selecting a motor coupling, consider the type and amount of misalignment expected in your application. Choose a coupling that offers the required level of misalignment compensation, ensuring smooth power transmission and extending the lifespan of the coupling and connected components.

“`motor coupling

Comparing Motor Couplings with Direct Drives and Other Power Transmission Methods

Motor couplings, direct drives, and other power transmission methods each have their advantages and disadvantages, making them suitable for different applications. Let’s compare these methods in terms of various factors:

1. Efficiency:

Motor couplings generally offer high efficiency in power transmission since they provide a direct mechanical connection between the motor and driven equipment. In contrast, direct drives can also be efficient as they eliminate the need for intermediate components.

2. Misalignment Compensation:

Motor couplings are designed to accommodate misalignments between the motor and driven equipment shafts, making them suitable for applications where misalignment is expected. Direct drives, on the other hand, require precise alignment between the motor and driven equipment.

3. Maintenance:

Motor couplings often have minimal maintenance requirements since they do not have intricate components. Direct drives can be maintenance-free as well since they eliminate the need for belts, chains, or gears.

4. Backlash:

Motor couplings typically have low or zero backlash, ensuring precise torque transmission. Direct drives also offer low or no backlash since there are no intermediate components to introduce play.

5. Cost:

Motor couplings are generally more cost-effective compared to direct drives, which may involve higher initial investment in specialized components. However, the overall cost may vary depending on the application and system requirements.

6. Space and Size:

Motor couplings are compact and can fit in tight spaces, making them suitable for applications with limited room. Direct drives may require more space, depending on their design and motor size.

7. Shock Absorption:

Motor couplings, especially those with elastomeric elements, can absorb shocks and vibrations, protecting the motor and driven equipment. Direct drives may not have the same level of shock absorption.

8. Torque Transmission:

Both motor couplings and direct drives are efficient in torque transmission. However, some direct drives may offer higher torque capacity for heavy-duty applications.

9. Installation Complexity:

Motor couplings are generally easier to install compared to direct drives, which may involve more intricate assembly and alignment procedures.

10. Application:

Motor couplings are versatile and can be used in various industrial setups, especially when misalignment compensation is required. Direct drives are commonly found in applications where high precision and direct mechanical connection are crucial.

Ultimately, the choice between motor couplings, direct drives, and other power transmission methods depends on the specific needs and constraints of the application. Each method offers distinct advantages, and selecting the most suitable option requires careful consideration of the application’s requirements, space limitations, budget, and maintenance preferences.

“`motor coupling

Types of Motor Couplings and Their Applications in Different Industries

Motor couplings come in various types, each designed to meet specific requirements and applications in different industries. Here are some common types of motor couplings and their typical uses:

1. Rigid Couplings:

Rigid couplings provide a solid and inflexible connection between the motor shaft and the driven equipment. They are ideal for applications where precise alignment and torque transmission are critical. Rigid couplings are commonly used in machine tools, robotics, and high-precision industrial equipment.

2. Flexible Couplings:

Flexible couplings are designed to accommodate misalignment between the motor and driven equipment shafts. They can handle angular, parallel, and axial misalignment, reducing stress on bearings and increasing the system’s flexibility. Flexible couplings find applications in pumps, compressors, conveyors, and other machinery where misalignment may occur due to vibration or thermal expansion.

3. Gear Couplings:

Gear couplings use toothed gears to transmit torque between the motor and the driven equipment. They provide high torque capacity and are suitable for heavy-duty applications, such as steel rolling mills, cranes, and marine propulsion systems.

4. Disc Couplings:

Disc couplings use thin metal discs to transmit torque. They offer high torsional stiffness, allowing precise motion control in applications like servo systems, CNC machines, and robotics.

5. Jaw Couplings:

Jaw couplings use elastomeric elements to dampen vibrations and accommodate misalignment. They are commonly used in small electric motors and general-purpose machinery.

6. Bellows Couplings:

Bellows couplings have a flexible accordion-like structure that compensates for misalignment while maintaining torsional rigidity. They are used in vacuum systems, optical equipment, and other high-precision applications.

7. Grid Couplings:

Grid couplings use a flexible grid element to transmit torque and dampen vibrations. They are suitable for applications in pumps, compressors, and conveyor systems where shock loads and misalignment are common.

8. Magnetic Couplings:

Magnetic couplings use magnetic fields to transmit torque between the motor and driven equipment. They are commonly used in applications requiring hermetic sealing, such as pumps and mixers handling hazardous or corrosive fluids.

Each type of motor coupling offers unique advantages and is chosen based on the specific needs of the industry and the application. Proper selection and installation of the right coupling type enhance efficiency, reliability, and safety in motor-driven systems across various industries.

“`
China Custom 3mm 4mm 6mm 8mm Hex Brass Flexible Motor Shaft Connector Coupling   motor couplingChina Custom 3mm 4mm 6mm 8mm Hex Brass Flexible Motor Shaft Connector Coupling   motor coupling
editor by CX 2023-09-27

Recent Posts